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Moduli spaces of semi-stable bundles

o Let C' be a smooth projective curve of genus g,
Uc = {s.s. bundles E of tk(E) = r, deg(E) = d on C'}
o Let Q be quotient scheme of quotients F, and
V ® Ocxq(—N) — F — 0, where V =CF®)

is the universal quotient on C' x Q, SL(V')-equivariant embeding

Q — G = Grassp() (V @ H(Oc(m — N)))
@ Uc is the GIT quotient Q*° — Q**//SL(V) := U¢, and

Oqss 1= detRmqss (.7:)4c ® det(fy)kTX

descends to an ample line bundle ©, on Uc when r|ky.
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Generalized theta functions

e whenr =1, H°Uc, Oy, ) is space of theta functions of order k
dim H(Uc, Oy,.) = Kk

o whenr >1, H%Uc,Oy,) is the space of so called generalized
theta functions of order k, dim H°(Uc, Oy.) =?

o dim H(Uc, Oy,) = (£)? dim HO(SUc, O,

o A formula was predicted by Conformal Field Theory, when r = 2,

KN (E+2)\7 (-1
. 0 _ _ - _—
dim H” (Uc, Ou,) = <2> < 5 > > DT )26-2

1=0 (Sin k+
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Degeneration method: the case of r = 1

@ Degenerate C to an irreducible curve X with exactly one node
xg € X, then Up = Jg, degenerates to Uy =

{torsion free sheaves E of tk(E) = 1, deg(E) = d on X} = J%

@ One need to show: dim HO(I,IC7 @Uc) = dim HO(UX, Ouy) (< by
H'(Uc, Oy.) =0 and HY (Ux, Oy ) = 0).

o Let m: X — X, 7 Ym) = {a1, 22}, £/X x Us be a universal (line)
bundle. Let P = Grassi(Ex, @ Ez,), consider diagram

Uy £P LUy

k—1
HOUy, Oy, ) = P H Uy, Ou, © €4 0 L @ €8
=0
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Factorization Theorem: Parabolic sheaves

e We say: E has a parabolic structure of type 7i(z) and weights d(x) at
a smooth point z € X, we mean a choice of flag of quotients

Ex = leJrl(E):c o - Ql(E):c - QO(E)z =0

of fibre E, with n;(z) = dim(ker{Q;(E), - Q;—1(F).}) and a
sequence of integers 0 < a1 (z) < as(x) < --- < ai,4+1(x) <k,

i(x) = (n(x), na(), - - i, 1(2))

d(x) = (a1(x), az(x), - s 4, 41())

e Forany F C E, let Q;(E)!" c Q;(E), be the image of F,

n{ = dim(ker{Qi(E); — Qi-1(E);})
1 lz+1

parx(F) == x(F) + -} Z a;(x)nj (z).
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Factorization Theorem: Moduli spaces

o E is called semistable (resp., stable) for £ if for any nontrivial
subsheaf E' C E such that E/FE’ is torsion free, one has

_ par\(E)
T

parx(E")

Theorem 1 (Sun, 2000)

There exists a seminormal projective variety

r(E') (resp., <).

Ux = UX(T, d, 1, {ﬁ(I)’ 6(5'3)}90617 k‘),

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and deg(E) = d with parabolic structures of
type {7i(z)}rcr and weights {d(x)},cr at points {x},ecr. If X is smooth,

then it is normal, with only rational singularities.
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Factorization Theorem: Construction of moduli spaces

° V®OXXQ(—N)—>_7:—>O, R = XQFlagﬁ(x)(]:z) —Q
xel

e Let W, = H°(Ox(m — N)), we have SL(V)-equivariant embedding

lo
R — Grassp(m)(V @ Wi,) x H H Grass, ) (V @ W)
zel i=1

where 7;(z) = rk(Q;1x®,i). The moduli space Uy is GIT quotient

Y R* — Uy = R*/SL(V)

under the polarzation frﬁ“]]\\; X [leridi(z), -+, di, (x)}, where
1 &
b= (kX -3 Zdi(ﬂﬁ)ri(f’f))
zel i=1

and d;(z) = aj+1(z) — a;(x).
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Factorization Theorem: The theta line bundles

Let V® Oxxr(—N) — & — 0 be the pullback of universal quotient,

Eryxr = QayxRril, =~ Qayxr2 = Qayxr,1 0

be the universal flags of quotients. Fixed a smooth point y € X, when

(= kx — Zmel Zizzl di(z)r;(x)

is an integer, for any integers {ay}zer, £y with £, +>° ra, =4,
lo
(det Rrrrss€) ™" @ R{(X) det(E2)"" @ det(Q(ayxpas )%™} @ det(£,)
el =1

descends to an ample line bundle (theta line bundle):

Ouy = O(k,r,d, 1, {d(x),7i(z), ac}oer, by)
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Factorization Theorem: When X is irreducible

Theorem 2 (Sun, 2000)

HO(uXv @Ux) = @Ho(u§7 @U;i()
w

where = (p1, -+, pr) runs through 0 < p, <--- < p3 <k —1.

o where 7 : X — X is the normalization, 7 xo) = {1, 22},
UX = Z/{X(ku T, d, {’Fi(:ﬂ% C_’:(x)}IEI)u
@UX = @(k,T’, d, {6($)7 ﬁ(x)7 aa:}xelagy)

@ For = (p1, - ,pp) with 0 <, <--- <y <k, let

M; = UX—(]{?, r,d, {ﬁ($)7 6(x)}xelu{x1,x2})7
81/{;( = @(ka r, d7 {d(‘r)7 ﬁ($), az}zelu{xl, x2}7 Ey)
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Remarks of Factorization Theorem

e For = (p1, - ,pp) with 0 <, <--- <y <k, let

{di = Ur; — Mn+1}1§i§l

be the subset of nonzero integers in {j; — ptit1}i=1,.. y—1.

o Define ri(zy) =1, di(x1)=di, 1z, =1, &g =p, and

ri(re) =1 —ri—ip1,  di(w2) =di—ip1, ey =1 g, =k —
C_i(xj): Hr,#r+d1(xj Y e Z d -T] Mr+zd CU]
Mi(zy) = (ri(zg), ra(zy) — ralzy), - o (25) = iy -1 (25))-

@ When r = 2, it is due to Narasimhan-Ramadas.
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Factorization Theorem: When X = X; U X5 reducible

Theorem 3 (Sun, 2003)

HO (Ux,0x5, Ouix, ox,) = D HOWUE, O ) @ HOWUE,, Oz )
12

where p = (p1, -+, pr) runs through 0 < p, < --- <y < k.

@ wherem: XjUX9g — XqUXy, I =11 Uly, and £ = 01 + ¥,

ququ = L{X(Tv da Il U 127 {ﬁ($)7 a(m)}ﬂféla 0(1)? k)

cil
c1+c2

choose O(1) = Ox(c1y1 + c2y2) such that ¢; = are integers.

° Gququ = @(k,?", d7 II U 127 {C_L'(.f), ﬁ(x)a ax}:ceflulgveylveyg)y

b+ > g =1 (i=1,2).

z€el;
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Factorization Theorem: Notation

e For = (p1, -+, pr) with 0 < pi,, < -+ < g <k, we define

ai= S S dena) s | + ol — 1)+ kZ’“
xzely 1=1

dg:% ZZd x) + 1l —|—T(gg—1)—i—r—%z,ui
z€lp i=1 i=1

e For j = 1,2, we define

uél(j =Ux ( T, Jal U{xj} {n( ) 6($)}x61ju{xj}vk)7

G)U; =O(k,r, dg 15U {xj}v {ii(z), d(z), ax}zelju{zj}a gyj)

J
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Vanishing Theorem: The case of smooth curves

e For any data w = (k,r,d, {7i(z),d(x)},er) such that

g KA+ r(1 =) = 300y Xit di(a)ri(x)

is an integer, we have the moduli space Ux , = Ux (w) and

@L{X,w = @(kv r,d, {T_i(x), 5($), O‘x}xelv Ey)

where £ =0y + 3" ay.

Theorem 4 (Sun, 2000)
Let X be a smooth projective curve of genus g. Then

Hl(uX,UM @Z/{X,w) =0

if(r—1)(g—1)+ 22 > 2.

Daejeon, August 6, 2014
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Vanishing Theorem: The case of singular curves

Theorem 5 (Sun, 2000)

Let X be an irreducible projective curve of genus g with one node and
(r—1)(g — 2) + g > 2. Then

H'(Ux,O1y.) = 0.

Theorem 6 (Sun, 2013)

Let X = X, U Xy be an reducible projective curve of genus g with one
node and (r — 1)g + gitb= > 2. Then

H'(Ux, Oy, ) = 0.
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Proof of Vanishing Theorems: When X is smooth

Theorem 7 (Sun, 2000)

For any w = (k,r,d,{fi(x),{di(x) }1<i<1, }ze1), We have
(1) codim(RsS\RE) > (r—1)(g—1) + &,
(2) codim(R\R) > (r—1)(g — 1) + i

Theorem 8 (Sun, 2000)
Let wx = Ox (> q), wr be the canonical sheaf of X, R. Then

wr! =(det RmpF) ' ®

@ { (e zoyoe= o @t 0. |

zel i=1
® X)(det Fy)' ™" @ (det RrpdetF)>.
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Proof of Vanishing Theorems: When X is smooth

e Forany w= (k‘,?‘, d, {ﬁ(.ﬁlﬁ), {di(x)}lﬁiﬁlz}wel)' we have

H' (Ux w, Ouy. ) = H' (RS, O)™ = H'(R, O)™
= HY(R, 05 ® Det*(0,) 2 @ wg)™
= H'(Ux, 5,05 ® Det*(0y) > @ wyy ) =0

where O ® wo' = 05 ® Det*(@y)_Q, O is determined by

W= (l%? r,d, {ﬁ($)7 {gi(x)}lﬁiﬁlx}xel)a k=k +2r, -

@ Det : R — J}i( induces Det : Ux — ng(, one can prove that
0y ® Det*(0,) 2

is ample
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Remarks about the proof: When X is smooth

Theorem 9 (Sun, 2013)

For any data w = (k,r,d, {7i(z),{di(z) }1<i<i, }zc1), the dimension of
HO(Z/[X,un (H)Z/IXVW)

is independent of the choices of curve X and the points x € X.

e For any data w = (k,r,d, {ri(z), {di(x) }1<i<i, }zcr), we choose

w(J) = (k7 r,d, {ﬁ(x)’ {di(x)}lﬁiﬁlx }eruJ)

[TUJ]
k+2r

such that (r —1)(¢g — 1) + > 2.

e The projection p; : R = xq Flags)(Fz) — R = xqFlags (Fz)
zelUJ xel
is SL(V)-invariant.
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Remarks about the proof: When X is smooth

o HO(Ux ., Ouy..,) = HO(RSs, @R)inv = HO(R, @R)znv _
HO(R, p}(OR))™
o pi(Or) = Oz @ Det*(0,) 2 @ ws, where
Pi(Or) ® w3 = Oy ® Det*(0,) 2,

~

Oy is determined by
w = (]%7 T, d7 {ﬁ(.’]}‘), {Cii(w)}lgiglz}xeluJ% ];; =k + 2T7 T
o HO(RE, O)™ = HO(R,Op @ Det*(0,) 2 @ wy )™
’(p . ﬁi—}s — UX,@
o (Knnop): (thwwz)™ = wyy , if codim(RE \ RE) > 2.

b HO(UX,LW @uX,w) = HO(UX,@ O ® Det*(@y)_2 ® WUX,Q)
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Sketch of Proof: Normalization ¢ : P — Ux of Uy

o Let m: X — X, 7 Yxo) = {z1, 22}, V®OXX7€( N)—F—0

p: R = Gr]raussr(]?gc1 ® Fyy) — R
e P = {semi-stable GPS (E,Q) = (E, Ey, ® E;, — Q — 0) }, which
is called moduli space of GPS (generalized parabolic sheaf), and

ﬁ/ss P = ﬁlss//SL(‘A})

@ ¢: P — Ux is defined by ¢(E, Q) = F', where F' is given by

0= F —=mbE —; Q—0

* ¢*@Ux =0Op = P*(Guf() ® 77]3?2- where Ny = det(Q) ® det(gm)_l
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Sketch of Proof: Filtration and Singularities

) P D D; ::Di(r—l)D"'DDi(CL)DDi(a—l)D"'DDi(O),

Dy(a) = { (B, Q)| rank(E,, — Q) < a}, (i=1,2)

° Ux DOWr1 D DWe D Wye1 D DO Wy, where

Wai={[F] € Ux | F & Oy = O &, t < a}

o

Theorem 10 (Sun, 2000)

e Ux and W, (0 < a < r) have only seminormal singularities.

e P and D;(a) (0 < a < 1) are normal with only rational singularities.

® ¢|p,(a) : Di(a) — W, is the normalization of W,, and

¢ :Di(a) \ {D1(a) ND2UD1(a—1)} Z Wy \ Wa—1
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Sketch of Proof: Factorization

e For any i > 0, ¢* : H{(Ux, Oy ) =2 HY(P, Op).

° HO(Z/IX7 @Z/{X) = HO(P’ 677(_1)1)) = Ho(u)?v 81/{5( ® ,0*77];2_1)

o VI[E]leU;, p '[E]) = Grass.(Ey ® Ey,) = Gr,

2o = det(Q) @ det(E,,) ™"
(e 7) @S E},)

where p = (1, -+, fir) runs through 0<pp < - <y <k.

o Su(E.) ®Su(EL) = H(Z) x 24, piL} @ psL}), where

ZZH = Flagﬁ(wi)(Exi), (i=1,2)
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Proof of Vanishing Theorems: When X has one node

e For any w = (k,r,d, {7fi(z),{di(z) }1<i<i, tzcr), we have

Hl(uX, @wa) = Hl('Pw, @p,w).

@ We have also Det : P — J;i(, and
HY(P,,0p,,) = H (P2, 0p,5 ® Det*(05') ® wp,)
@ When X is irreducible, Op o ® Det*(@;l) may not be ample, then
it was reduced to the case of fixed determinant (where Det*(©71)

disappear).

@ When X = X; U Xy, Op 5 ® Det*(@}l) is indeed ample.
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Frobenius splitting and Frobenius splitting type of varieties

o A variety M defined over a prefect field k of char(k) =p > 0'is
called Frobenius splitting if

0—>(9M—>F*(’)M—>B}W—>0
is splitting, where F': M — M is the Frobenius morphism of M.
o A variety M defined over a field of characteristic zero is called of

Frobenius splitting type if its modulo p reduction is Frobenius
splitting for almost p.

o Let f: M’ — M be a morphism such that f.(Oyp) = Op and M’ be
Frobenius splitting (resp. of Frobenius splitting type). Then so is M.

@ A normal proper Fano variety with only rational singularities is of
Frobenius splitting type (Smith).
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Frobenius splitting type of moduli spaces

Theorem 11 (Sun-Zhou, 2014)

Let X be a smooth projective curve. Then, for any data w, the moduli
spaces U )L(’w and P)L(M of parabolic and generalized parabolic sheaves with
fixed determinant L are of Frobenius splitting type.

@ Recall py : ﬁL — R, there are data @ such that
Uis =R/ /SLIV)

is a normal, proper Fano variety with only rational singularities.
o Let U =p; ' (Ry,) NRS 5, then codim(R3;\ U) > 2.

o LetU C Z/{)L(a be the image of U, then pr induces a morphism
frU—Ug,
such that f.(Op) = Oyr .
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Vanishing theorems

Let X be a projective curve with at most one node and Ux ., be the
moduli space of parabolic sheaves on X with any given data w. Then

H'Uxw,Ouy ) =0, YV i>0
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Thanks !

Xiaotao Sun (Institute of Mathematics, CAS)Degeneration of moduli spaces and generalize Daejeon, A



