Degeneration of moduli spaces and generalized theta functions

Xiaotao Sun

Institute of Mathematics, CAS

Daejeon, August 6, 2014

Moduli spaces of semi-stable bundles

ullet Let C be a smooth projective curve of genus g,

$$\mathcal{U}_C = \{ \text{s.s. bundles } E \text{ of } \operatorname{rk}(E) = r, \operatorname{deg}(E) = d \text{ on } C \}$$

Let Q be quotient scheme of quotients E, and

$$V \otimes \mathcal{O}_{C \times \mathbf{Q}}(-N) \to \mathcal{F} \to 0$$
, where $V = \mathbb{C}^{P(N)}$

is the universal quotient on $C imes \mathbf{Q}$, $\operatorname{SL}(V)$ -equivariant embeding

$$\mathbf{Q} \hookrightarrow \mathbf{G} = \operatorname{Grass}_{P(m)}(V \otimes \mathrm{H}^0(\mathcal{O}_C(m-N)))$$

• \mathcal{U}_C is the GIT quotient $\mathbf{Q}^{ss} o \mathbf{Q}^{ss}//\mathrm{SL}(V) := \mathcal{U}_C$, and

$$\Theta_{\mathbf{Q}^{ss}} := \det R\pi_{\mathbf{Q}^{ss}}(\mathcal{F})^{-k} \otimes \det(\mathcal{F}_y)^{\frac{k\chi}{r}}$$

descends to an ample line bundle $\Theta_{\mathcal{U}_C}$ on \mathcal{U}_C when $r|k\chi$.

Generalized theta functions

• when r=1, $H^0(\mathcal{U}_C,\Theta_{\mathcal{U}_C})$ is space of theta functions of order k

$$\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = k^g$$

- when r > 1, $H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C})$ is the space of so called **generalized** theta functions of order k, $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = ?$
- dim $H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \left(\frac{k}{r}\right)^g \dim H^0(\mathcal{SU}_C, \Theta_{\mathcal{U}_C})$
- ullet A formula was predicted by **Conformal Field Theory**, when r=2,

$$\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \left(\frac{k}{2}\right)^g \left(\frac{k+2}{2}\right)^{g-1} \sum_{i=0}^k \frac{(-1)^{id}}{\left(\sin\frac{(i+1)\pi}{k+2}\right)^{2g-2}}$$

Degeneration method: the case of r = 1

• Degenerate C to an irreducible curve X with exactly one node $x_0 \in X$, then $\mathcal{U}_C = J_C^d$ degenerates to $\mathcal{U}_X =$

$$\{ \text{torsion free sheaves } E \text{ of } \operatorname{rk}(E) = 1 \text{, } \deg(E) = d \text{ on } X \} = J_X^d$$

- One need to show: $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \dim H^0(\mathcal{U}_X, \Theta_{\mathcal{U}_X})$ (\Leftarrow by $H^1(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = 0$ and $H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) = 0$).
- Let $\pi: \widetilde{X} \to X$, $\pi^{-1}(x_0) = \{x_1, x_2\}$, $\mathcal{E}/\widetilde{X} \times \mathcal{U}_{\widetilde{X}}$ be a universal (line) bundle. Let $\mathcal{P} = Grass_1(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2})$, consider diagram

$$\mathcal{U}_{\widetilde{X}} \stackrel{\rho}{\leftarrow} \mathcal{P} \stackrel{\phi}{\rightarrow} \mathcal{U}_X$$

$$H^{0}(\mathcal{U}_{X},\Theta_{\mathcal{U}_{X}}) = \bigoplus_{i=0}^{k-1} H^{0}(\mathcal{U}_{\widetilde{X}},\Theta_{\mathcal{U}_{\widetilde{X}}} \otimes \mathcal{E}_{y}^{-k} \otimes \mathcal{E}_{x_{1}}^{i} \otimes \mathcal{E}_{x_{2}}^{k-i})$$

Factorization Theorem: Parabolic sheaves

• We say: E has a parabolic structure of type $\vec{n}(x)$ and weights $\vec{a}(x)$ at a smooth point $x \in X$, we mean a choice of flag of quotients

$$E_x = Q_{l_x+1}(E)_x \twoheadrightarrow \cdots \longrightarrow Q_1(E)_x \twoheadrightarrow Q_0(E)_x = 0$$

$$E_x \text{ with } g_x(x) = \dim(\ker(Q_x(E)) \longrightarrow Q_x(E)_x \text{ and } Q_x(E)_x \text$$

of fibre E_x with $n_i(x) = \dim(\ker\{Q_i(E)_x \twoheadrightarrow Q_{i-1}(E)_x\})$ and a sequence of integers $0 \le a_1(x) < a_2(x) < \cdots < a_{l_x+1}(x) < k$,

$$\vec{n}(x) := (n_1(x), n_2(x), \cdots, n_{l_x+1}(x))$$
$$\vec{a}(x) := (a_1(x), a_2(x), \cdots, a_{l_x+1}(x))$$

• For any $F \subset E$, let $Q_i(E)_x^F \subset Q_i(E)_x$ be the image of F,

$$n_i^F = \dim(\ker\{Q_i(E)_x^F \twoheadrightarrow Q_{i-1}(E)_x^F\})$$

$$\operatorname{par}\chi(F) := \chi(F) + \frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i^F(x).$$

Factorization Theorem: Moduli spaces

• E is called **semistable** (resp., **stable**) for $\frac{\vec{a}}{\vec{k}}$ if for any nontrivial subsheaf $E' \subset E$ such that E/E' is torsion free, one has

$$\operatorname{par}\chi(E') \leq \frac{\operatorname{par}\chi(E)}{r} \cdot r(E') \text{ (resp., <)}.$$

Theorem 1 (Sun, 2000)

There exists a seminormal projective variety

$$\mathcal{U}_X := \mathcal{U}_X(r, d, I, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k),$$

which is the coarse moduli space of s-equivalence classes of semistable parabolic sheaves E of rank r and $\deg(E)=d$ with parabolic structures of type $\{\vec{n}(x)\}_{x\in I}$ and weights $\{\vec{a}(x)\}_{x\in I}$ at points $\{x\}_{x\in I}$. If X is smooth, then it is normal, with only rational singularities.

Factorization Theorem: Construction of moduli spaces

- $V \otimes \mathcal{O}_{X \times \mathbf{Q}}(-N) \to \mathcal{F} \to 0$, $\mathcal{R} = \underset{x \in I}{\times} \mathbf{Q} Flag_{\vec{n}(x)}(\mathcal{F}_x) \to \mathbf{Q}$
- Let $W_m = \mathrm{H}^0(\mathcal{O}_X(m-N))$, we have $\mathrm{SL}(V)$ -equivariant embedding

$$\mathcal{R} \hookrightarrow Grass_{P(m)}(V \otimes W_m) \times \prod_{x \in I} \prod_{i=1}^{l_x} Grass_{r_i(x)}(V \otimes W_m)$$

where $r_i(x) = \text{rk}(\mathcal{Q}_{\{x\} \times \mathcal{R}, i})$. The moduli space \mathcal{U}_X is GIT quotient

$$\psi: \mathcal{R}^{ss} \to \mathcal{U}_X = \mathcal{R}^{ss}/\mathrm{SL}(V)$$

under the polarization $\frac{\ell+kN}{m-N} \times \prod_{x \in I} \{d_1(x), \cdots, d_{l_x}(x)\}$, where

$$\ell = \frac{1}{r} \left(k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x) \right)$$

and
$$d_i(x) = a_{i+1}(x) - a_i(x)$$
.

Factorization Theorem: The theta line bundles

Let $V \otimes \mathcal{O}_{X \times \mathcal{R}}(-N) \to \mathcal{E} \to 0$ be the pullback of universal quotient,

$$\mathcal{E}_{\{x\} \times \mathcal{R}} \twoheadrightarrow \mathcal{Q}_{\{x\} \times \mathcal{R}, l_x} \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{Q}_{\{x\} \times \mathcal{R}, 2} \twoheadrightarrow \mathcal{Q}_{\{x\} \times \mathcal{R}, 1} \twoheadrightarrow 0$$

be the universal flags of quotients. Fixed a smooth point $y \in X$, when

$$\ell = \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x)}{r}$$

is an integer, for any integers $\{lpha_x\}_{x\in I}$, ℓ_y with $\ell_y+\sum_{x\in I}lpha_x=\ell$,

$$(\det R\pi_{\mathcal{R}^{ss}}\mathcal{E})^{-k} \otimes \bigotimes_{x \in I} \{ \bigotimes_{i=1}^{l_x} \det(\mathcal{E}_x)^{\alpha_x} \otimes \det(\mathcal{Q}_{\{x\} \times \mathcal{R}^{ss}, i})^{d_i(x)} \} \otimes \det(\mathcal{E}_y)^{\ell_y}$$

descends to an ample line bundle (theta line bundle):

$$\Theta_{\mathcal{U}_X} = \Theta(k, r, d, I, \{\vec{a}(x), \vec{n}(x), \alpha_x\}_{x \in I}, \ell_y)$$

Factorization Theorem: When X is irreducible

Theorem 2 (Sun, 2000)

$$H^0(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \cong \bigoplus_{\mu} H^0(\mathcal{U}_{\widetilde{X}}^{\mu}, \Theta_{\mathcal{U}_{\widetilde{X}}^{\mu}})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \le \mu_r \le \dots \le \mu_1 \le k-1$.

• where $\pi:\widetilde{X}\to X$ is the normalization, $\pi^{-1}(x_0)=\{x_1,x_2\}$,

$$\mathcal{U}_X := \mathcal{U}_X(k, r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}),$$

$$\Theta_{\mathcal{U}_X} := \Theta(k, r, d, \{\vec{a}(x), \vec{n}(x), \alpha_x\}_{x \in I}, \ell_y)$$

$$\begin{split} \bullet \ \ \text{For} \ \mu &= (\mu_1, \cdots, \mu_r) \ \text{with} \ 0 \leq \mu_r \leq \cdots \leq \mu_1 < k \text{, let} \\ \mathcal{U}^{\mu}_{\widetilde{X}} &:= \mathcal{U}_{\widetilde{X}}(k, r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I \cup \{x_1, x_2\}}), \\ \Theta_{\mathcal{U}^{\mu}_{\widetilde{x}}} &:= \Theta(k, r, d, \{\vec{a}(x), \vec{n}(x), \alpha_x\}_{x \in I \cup \{x_1, x_2\}}, \ell_y) \end{split}$$

Remarks of Factorization Theorem

• For $\mu = (\mu_1, \dots, \mu_r)$ with $0 \le \mu_r \le \dots \le \mu_1 < k$, let

$$\{d_i = \mu_{r_i} - \mu_{r_i+1}\}_{1 \le i \le l}$$

be the subset of nonzero integers in $\{\mu_i - \mu_{i+1}\}_{i=1,\dots,r-1}$.

• Define $r_i(x_1)=r_i,\quad d_i(x_1)=d_i,\quad l_{x_1}=l,\quad \alpha_{x_1}=\mu_r$ and $r_i(x_2)=r-r_{l-i+1},\quad d_i(x_2)=d_{l-i+1},\quad l_{x_2}=l,\quad \alpha_{x_2}=k-\mu_1$

$$\vec{a}(x_j) = \left(\mu_r, \mu_r + d_1(x_j), \cdots, \mu_r + \sum_{i=1}^{l_{x_j}-1} d_i(x_j), \mu_r + \sum_{i=1}^{l_{x_j}} d_i(x_j)\right)$$
$$\vec{n}(x_j) = (r_1(x_j), r_2(x_j) - r_1(x_j), \cdots, r_{l_{x_i}}(x_j) - r_{l_{x_i}-1}(x_j)).$$

• When r = 2, it is due to Narasimhan-Ramadas.

Factorization Theorem: When $X = X_1 \cup X_2$ reducible

Theorem 3 (Sun, 2003)

$$H^0(\mathcal{U}_{X_1\cup X_2},\Theta_{\mathcal{U}_{X_1\cup X_2}})\cong\bigoplus_{\mu}H^0(\mathcal{U}_{X_1}^{\mu},\Theta_{\mathcal{U}_{X_1}^{\mu}})\otimes H^0(\mathcal{U}_{X_2}^{\mu},\Theta_{\mathcal{U}_{X_2}^{\mu}})$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \le \mu_r \le \dots \le \mu_1 < k$.

- where $\pi: X_1 \sqcup X_2 \to X_1 \cup X_2$, $I = I_1 \cup I_2$, and $\ell = \ell_1 + \ell_2$,
 - $\mathcal{U}_{X_1 \cup X_2} := \mathcal{U}_X(r, d, I_1 \cup I_2, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, \mathcal{O}(1), k)$

choose $\mathcal{O}(1)=\mathcal{O}_X(c_1y_1+c_2y_2)$ such that $\ell_i=\frac{c_i\ell}{c_1+c_2}$ are integers.

 $\bullet \quad \Theta_{\mathcal{U}_{X_1 \cup X_2}} = \Theta(k, r, d, I_1 \cup I_2, \{\vec{a}(x), \vec{n}(x), \alpha_x\}_{x \in I_1 \cup I_2}, \ell_{y_1}, \ell_{y_2}),$

$$\ell_{y_i} + \sum_{x \in I_i} \alpha_x = \ell_i \quad (i = 1, 2).$$

◆ロト ◆卸 ▶ ◆ 差 ▶ ◆ 差 ▶ の へ ○

Factorization Theorem: Notation

• For $\mu = (\mu_1, \dots, \mu_r)$ with $0 \le \mu_r \le \dots \le \mu_1 < k$, we define

$$d_1^{\mu} = \frac{1}{k} \left(\sum_{x \in I_1} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r \ell_1 \right) + r(g_1 - 1) + \frac{1}{k} \sum_{i=1}^{r} \mu_i$$

$$d_2^{\mu} = \frac{1}{k} \left(\sum_{x \in I_2} \sum_{i=1}^{l_x} d_i(x) r_i(x) + r \ell_2 \right) + r(g_2 - 1) + r - \frac{1}{k} \sum_{i=1}^{r} \mu_i$$

• For j = 1, 2, we define

$$\mathcal{U}_{X_j}^{\mu} := \mathcal{U}_{X_j}(r, d_j^{\mu}, I_j \cup \{x_j\}, \{\vec{n}(x), \vec{a}(x)\}_{x \in I_j \cup \{x_j\}}, k),$$

$$\Theta_{\mathcal{U}_{X_{j}}^{\mu}} = \Theta(k, r, d_{j}^{\mu}, I_{j} \cup \{x_{j}\}, \{\vec{n}(x), \vec{a}(x), \alpha_{x}\}_{x \in I_{j} \cup \{x_{j}\}}, \ell_{y_{j}})$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

Vanishing Theorem: The case of smooth curves

 \bullet For any data $\omega = (k,r,d,\{\vec{n}(x),\vec{a}(x)\}_{x\in I})$ such that

$$\ell := \frac{k(d+r(1-g)) - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x) r_i(x)}{r}$$

is an integer, we have the moduli space $\mathcal{U}_{X,\,\omega}=\mathcal{U}_X(\omega)$ and

$$\Theta_{\mathcal{U}_{X,\,\omega}} = \Theta(k, r, d, \{\vec{n}(x), \vec{a}(x), \alpha_x\}_{x \in I}, \ell_y)$$

where $\ell = \ell_y + \sum_x \alpha_x$.

Theorem 4 (Sun, 2000)

Let X be a smooth projective curve of genus g. Then

$$H^1(\mathcal{U}_{X,\,\omega},\Theta_{\mathcal{U}_{X,\,\omega}})=0$$

if
$$(r-1)(g-1) + \frac{|I|}{k+2r} \ge 2$$
.

Vanishing Theorem: The case of singular curves

Theorem 5 (Sun, 2000)

Let X be an irreducible projective curve of genus g with one node and $(r-1)(g-2)+\frac{|I|}{k+2r}\geq 2$. Then

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) = 0.$$

Theorem 6 (Sun, 2013)

Let $X=X_1\cup X_2$ be an reducible projective curve of genus g with one node and $(r-1)g+\frac{|I|}{k+2r}\geq 2$. Then

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) = 0.$$

Proof of Vanishing Theorems: When X is smooth

Theorem 7 (Sun, 2000)

For any $\omega=(k,r,d,\{\vec{n}(x),\{d_i(x)\}_{1\leq i\leq l_x}\}_{x\in I})$, we have

- (1) $\operatorname{codim}(\mathcal{R}_{\omega}^{ss} \setminus \mathcal{R}_{\omega}^{s}) \ge (r-1)(g-1) + \frac{|I|}{k},$
- (2) $\operatorname{codim}(\mathcal{R} \setminus \mathcal{R}_{\omega}^{ss}) > (r-1)(g-1) + \frac{|I|}{k}.$

Theorem 8 (Sun, 2000)

Let $\omega_X = \mathcal{O}_X(\sum q)$, $\omega_{\mathcal{R}}$ be the canonical sheaf of X, \mathcal{R} . Then

$$\omega_{\mathcal{R}}^{-1} = (\det R\pi_{\mathcal{R}}\mathcal{F})^{-2r} \otimes$$

$$\bigotimes_{x \in I} \left\{ (\det \mathcal{F}_x)^{n_{l_x+1}-r} \otimes \bigotimes_{i=1}^{l_x} (\det \mathcal{Q}_{x,i})^{n_i(x)+n_{i+1}(x)} \right\}$$

$$\otimes \bigotimes_{q} (\det \mathcal{F}_q)^{1-r} \otimes (\det R\pi_{\mathcal{R}} \det \mathcal{F})^2.$$

Proof of Vanishing Theorems: When X is smooth

 \bullet For any $\omega=(k,r,d,\{\vec{n}(x),\{d_i(x)\}_{1\leq i\leq l_x}\}_{x\in I}),$ we have

$$\begin{split} & H^{1}(\mathcal{U}_{X,\omega},\Theta_{\mathcal{U}_{X,\omega}}) = H^{1}(\mathcal{R}_{\omega}^{ss},\hat{\Theta}_{\mathcal{R}})^{inv} = H^{1}(\mathcal{R},\hat{\Theta}_{\mathcal{R}})^{inv} \\ & = H^{1}(\mathcal{R},\hat{\Theta}_{\bar{\omega}} \otimes \operatorname{Det}^{*}(\Theta_{y})^{-2} \otimes \omega_{\mathcal{R}})^{inv} \\ & = H^{1}(\mathcal{U}_{X,\bar{\omega}},\Theta_{\bar{\omega}} \otimes \operatorname{Det}^{*}(\Theta_{y})^{-2} \otimes \omega_{\mathcal{U}_{X,\bar{\omega}}}) = 0 \end{split}$$

where $\hat{\Theta}_{\mathcal{R}}\otimes\omega_{\mathcal{R}}^{-1}=\hat{\Theta}_{\bar{\omega}}\otimes\mathrm{Det}^*(\Theta_y)^{-2}$, $\hat{\Theta}_{\bar{\omega}}$ is determined by $\bar{\omega}=(\bar{k},r,d,\{\vec{n}(x),\{\bar{d}_i(x)\}_{1\leq i\leq l_x}\}_{x\in I}),\quad \bar{k}=k+2r,\cdots$

ullet Det $:\mathcal{R} o J_X^d$ induces $\mathrm{Det}:\mathcal{U}_X o J_X^d$, one can prove that

$$\Theta_{\bar{\omega}} \otimes \operatorname{Det}^*(\Theta_y)^{-2}$$

is ample

Remarks about the proof: When X is smooth

Theorem 9 (Sun, 2013)

For any data $\omega=(k,r,d,\{\vec{n}(x),\{d_i(x)\}_{1\leq i\leq l_x}\}_{x\in I})$, the dimension of

$$\mathrm{H}^0(\mathcal{U}_{X,\,\omega},\Theta_{\mathcal{U}_{X,\,\omega}})$$

is independent of the choices of curve X and the points $x \in X$.

• For any data $\omega = (k, r, d, \{\vec{n}(x), \{d_i(x)\}_{1 \leq i \leq l_x}\}_{x \in I})$, we choose

$$\omega(J) = (k, r, d, \{\vec{n}(x), \{d_i(x)\}_{1 \le i \le l_x}\}_{x \in I \cup J})$$

such that
$$(r-1)(g-1) + \frac{|I \cup J|}{k+2r} \ge 2$$
.

• The projection $p_I: \widetilde{\mathcal{R}} = \underset{x \in I \cup J}{\times_{\mathbf{Q}}} Flag_{\vec{n}(x)}(\mathcal{F}_x) \to \mathcal{R} = \underset{x \in I}{\times_{\mathbf{Q}}} Flag_{\vec{n}(x)}(\mathcal{F}_x)$ is $\mathrm{SL}(V)$ -invariant.

Remarks about the proof: When X is smooth

- $\mathrm{H}^0(\mathcal{U}_{X,\,\omega},\Theta_{\mathcal{U}_{X,\,\omega}}) = \mathrm{H}^0(\mathcal{R}^{ss}_{\omega},\hat{\Theta}_{\mathcal{R}})^{inv} = \mathrm{H}^0(\mathcal{R},\hat{\Theta}_{\mathcal{R}})^{inv} = \mathrm{H}^0(\tilde{\mathcal{R}},p_I^*(\hat{\Theta}_{\mathcal{R}}))^{inv}$
- $p_I^*(\hat{\Theta}_{\mathcal{R}}) = \hat{\Theta}_{\bar{\omega}} \otimes \mathrm{Det}^*(\Theta_y)^{-2} \otimes \omega_{\widetilde{\mathcal{R}}}$, where

$$p_I^*(\hat{\Theta}_{\mathcal{R}}) \otimes \omega_{\widetilde{\mathcal{R}}}^{-1} = \hat{\Theta}_{\bar{\omega}} \otimes \mathrm{Det}^*(\Theta_y)^{-2},$$

 $\hat{\Theta}_{\bar{\omega}}$ is determined by

$$\bar{\omega} = (\bar{k}, r, d, \{\vec{n}(x), \{\bar{d}_i(x)\}_{1 \le i \le l_x}\}_{x \in I \cup J}), \quad \bar{k} = k + 2r, \dots$$

- $H^0(\mathcal{R}^{ss}_{\omega}, \hat{\Theta}_{\mathcal{R}})^{inv} = H^0(\widetilde{\mathcal{R}}, \hat{\Theta}_{\bar{\omega}} \otimes \operatorname{Det}^*(\Theta_y)^{-2} \otimes \omega_{\widetilde{\mathcal{R}}})^{inv}$ $\psi : \widetilde{\mathcal{R}}^{ss}_{\bar{\omega}} \to \mathcal{U}_{X,\bar{\omega}}$
- (Knnop): $(\psi_*\omega_{\widetilde{\mathcal{R}}})^{inv} = \omega_{\mathcal{U}_{X,\bar{\omega}}} \text{ if } codim(\widetilde{\mathcal{R}}^{ss}_{\bar{\omega}} \setminus \widetilde{\mathcal{R}}^{s}_{\bar{\omega}}) \geq 2.$
- $\mathrm{H}^0(\mathcal{U}_{X,\,\omega},\Theta_{\mathcal{U}_{X,\,\bar{\omega}}})=\mathrm{H}^0(\mathcal{U}_{X,\,\bar{\omega}},\Theta_{\bar{\omega}}\otimes\mathrm{Det}^*(\Theta_y)^{-2}\otimes\omega_{\mathcal{U}_{X,\,\bar{\omega}}})$

Sketch of Proof: Normalization $\phi: \mathcal{P} \to \mathcal{U}_X$ of \mathcal{U}_X

• Let
$$\pi: \widetilde{X} \to X$$
, $\pi^{-1}(x_0) = \{x_1, x_2\}$, $\widetilde{V} \otimes \mathcal{O}_{\widetilde{X} \times \widetilde{\mathcal{R}}}(-N) \to \widetilde{\mathcal{F}} \to 0$
$$\rho: \widetilde{\mathcal{R}}' = \mathrm{Grass}_r(\widetilde{\mathcal{F}}_{x_1} \oplus \widetilde{\mathcal{F}}_{x_2}) \to \widetilde{\mathcal{R}}$$

• $\mathcal{P} = \{ \text{ semi-stable GPS } (E,Q) = (E,E_{x_1} \oplus E_{x_2} \to Q \to 0) \}$, which is called **moduli space of GPS** (generalized parabolic sheaf), and

$$\widetilde{\mathcal{R}}'^{ss} \to \mathcal{P} := \widetilde{\mathcal{R}}'^{ss} / / \mathrm{SL}(\widetilde{V})$$

• $\phi:\mathcal{P}\to\mathcal{U}_X$ is defined by $\phi(E,Q)=F$, where F is given by $0\to F\to \pi_*E\to_{x_0}Q\to 0$

• $\phi^*\Theta_{\mathcal{U}_X} = \Theta_{\mathcal{P}} = \rho^*(\Theta_{\mathcal{U}_{\widetilde{X}}}) \otimes \eta_{x_2}^k$, where $\eta_{x_2} = \det(\mathcal{Q}) \otimes \det(\mathcal{E}_{x_2})^{-1}$

4 D X 4 B X 4 E X

Sketch of Proof: Filtration and Singularities

•
$$\mathcal{P} \supset \mathcal{D}_i := \mathcal{D}_i(r-1) \supset \cdots \supset \mathcal{D}_i(a) \supset \mathcal{D}_i(a-1) \supset \cdots \supset \mathcal{D}_i(0),$$

$$\mathcal{D}_i(a) = \{ (E,Q) \mid \operatorname{rank}(E_{x_i} \to Q) \leq a \}, (i=1,2)$$

•
$$\mathcal{U}_X\supset\mathcal{W}_{r-1}\supset\cdots\supset\mathcal{W}_a\supset\mathcal{W}_{a-1}\supset\cdots\supset\mathcal{W}_0$$
, where
$$\mathcal{W}_a:=\{\,[F]\in\mathcal{U}_X\,|\,F\otimes\hat{\mathcal{O}}_{x_0}=\hat{\mathcal{O}}_{x_0}^{\oplus t}\oplus\hat{m}_{x_0}^{\oplus (r-t)},\,t\leq a\,\}$$

Theorem 10 (Sun, 2000)

- \mathcal{U}_X and \mathcal{W}_a ($0 \le a < r$) have only seminormal singularities.
- \mathcal{P} and $\mathcal{D}_i(a)$ $(0 \leq a < r)$ are normal with only rational singularities.
- $\phi|_{\mathcal{D}_1(a)}:\mathcal{D}_1(a) \to \mathcal{W}_a$ is the normalization of \mathcal{W}_a , and

$$\phi: \mathcal{D}_1(a) \setminus \{\mathcal{D}_1(a) \cap \mathcal{D}_2 \cup \mathcal{D}_1(a-1)\} \cong \mathcal{W}_a \setminus \mathcal{W}_{a-1}$$

Sketch of Proof: Factorization

- For any i > 0, $\phi^* : H^i(\mathcal{U}_X, \Theta_{\mathcal{U}_Y}) \cong H^i(\mathcal{P}, \Theta_{\mathcal{D}}).$
- $\mathrm{H}^0(\mathcal{U}_X,\Theta_{\mathcal{U}_Y})\cong\mathrm{H}^0(\mathcal{P},\Theta_{\mathcal{P}}(-\mathcal{D}_1))=\mathrm{H}^0(\mathcal{U}_{\widetilde{Y}},\Theta_{\mathcal{U}_{\widetilde{Y}}}\otimes\rho_*\eta_{x_2}^{k-1}).$
- $\forall [E] \in \mathcal{U}_{\widetilde{Y}}, \quad \rho^{-1}([E]) = Grass_r(E_{x_1} \oplus E_{x_2}) := Gr.$

$$\eta_{x_2} = \det(Q) \otimes \det(E_{x_2})^{-1}$$

$$\mathrm{H}^0(Gr,\eta_{x_2}^{k-1}) = \bigoplus_{\mu} \mathbb{S}_{\mu}(E_{x_1}) \otimes \mathbb{S}_{\mu}(E_{x_2}^*)$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \le \mu_r \le \dots \le \mu_1 < k$.

• $\mathbb{S}_{\mu}(E_{x_1}) \otimes \mathbb{S}_{\mu}(E_{x_2}^*) = \mathrm{H}^0(\mathcal{Z}_1^{\mu} \times \mathcal{Z}_2^{\mu}, p_1^* \mathcal{L}_1^{\mu} \otimes p_2^* \mathcal{L}_2^{\mu}), \text{ where }$

$$\mathcal{Z}_{i}^{\mu} := Flag_{\vec{n}(x_{i})}(E_{x_{i}}), \ (i = 1, 2)$$

Proof of Vanishing Theorems: When X has one node

• For any $\omega=(k,r,d,\{\vec{n}(x),\{d_i(x)\}_{1\leq i\leq l_x}\}_{x\in I})$, we have

$$H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X, \omega}) \cong H^1(\mathcal{P}_\omega, \Theta_{\mathcal{P}, \omega}).$$

ullet We have also $\mathrm{Det}:\mathcal{P} o J^d_{\widetilde{X}}$, and

$$H^{1}(\mathcal{P}_{\omega}, \Theta_{\mathcal{P}, \omega}) = H^{1}(\mathcal{P}_{\bar{\omega}}, \Theta_{\mathcal{P}, \bar{\omega}} \otimes \operatorname{Det}^{*}(\Theta_{J}^{-1}) \otimes \omega_{\mathcal{P}_{\bar{\omega}}})$$

- When X is irreducible, $\Theta_{\mathcal{P},\bar{\omega}}\otimes \mathrm{Det}^*(\Theta_J^{-1})$ may not be ample, then it was reduced to the case of fixed determinant (where $\mathrm{Det}^*(\Theta_J^{-1})$ disappear).
- When $X = X_1 \cup X_2$, $\Theta_{\mathcal{P},\bar{\omega}} \otimes \mathrm{Det}^*(\Theta_I^{-1})$ is indeed ample.

Frobenius splitting and Frobenius splitting type of varieties

• A variety M defined over a prefect field k of char(k)=p>0 is called Frobenius splitting if

$$0 \to \mathcal{O}_M \to F_*\mathcal{O}_M \to B_M^1 \to 0$$

is splitting, where $F: M \to M$ is the Frobenius morphism of M.

- A variety M defined over a field of characteristic zero is called of Frobenius splitting type if its modulo p reduction is Frobenius splitting for almost p.
- Let $f: M' \to M$ be a morphism such that $f_*(\mathcal{O}_{M'}) = \mathcal{O}_M$ and M' be Frobenius splitting (resp. of Frobenius splitting type). Then so is M.
- A normal proper Fano variety with only rational singularities is of Frobenius splitting type (Smith).

Frobenius splitting type of moduli spaces

Theorem 11 (Sun-Zhou, 2014)

Let X be a smooth projective curve. Then, for any data ω , the moduli spaces $\mathcal{U}^L_{X,\omega}$ and $\mathcal{P}^L_{X,\omega}$ of parabolic and generalized parabolic sheaves with fixed determinant L are of Frobenius splitting type.

ullet Recall $p_I:\widetilde{\mathcal{R}}_L o\mathcal{R}_L$, there are data $\widetilde{\omega}$ such that

$$\mathcal{U}_{X,\widetilde{\omega}}^{L} = \widetilde{\mathcal{R}}_{L,\widetilde{\omega}}^{ss} / / SL(V)$$

is a normal, proper Fano variety with only rational singularities.

- $\bullet \ \ {\rm Let} \ \widetilde{U}=p_I^{-1}(\mathcal{R}_{L,\omega}^{ss})\cap \widetilde{\mathcal{R}}_{L,\widetilde{\omega}}^s, \ {\rm then} \ codim(\widetilde{\mathcal{R}}_{L,\widetilde{\omega}}^{ss}\setminus \widetilde{U})\geq 2.$
- Let $U \subset \mathcal{U}^L_{X.\widetilde{\omega}}$ be the image of \widetilde{U} , then p_I induces a morphism

$$f:U\to \mathcal{U}_{X,\omega}^L$$

such that $f_*(\mathcal{O}_U) = \mathcal{O}_{\mathcal{U}^L_{X_{|U|}}}$.

Vanishing theorems

Corollary 1

Let X be a projective curve with at most one node and $\mathcal{U}_{X,\omega}$ be the moduli space of parabolic sheaves on X with any given data ω . Then

$$H^i(\mathcal{U}_{X,\omega},\Theta_{\mathcal{U}_{X,\omega}})=0, \quad \forall i>0$$

Thanks!